

Store on Condition (STOC) stores (or not) the rightmost 32 bits of a register designated
by R1 into a fullword in memory designated by operand 2. The fullword is stored in memory
depending on a combination of the mask bits in operand 3, and the current condition code.

The mask field consists of four bits representing conditions equal/zero, low/minus,

high/plus, and overflow in sequence from left to right. A 1 bit in the mask indicates the load
should occur if the corresponding condition exists. For example, mask B’1000’ represents
condition equal/zero, while mask B’1010’ represents conditions equal/zero or high/plus, and
mask B’0111’ represents conditions low/minus, high/plus, and overflow. If the current
condition code matches any bit in the mask, the rightmost 32 bits of R1 are stored, otherwise
no store occurs.

For example, assume the current condition code is high. Consider the following code,

 STOC 5,X,B’0111’

Since the high bit is indicated in the above mask (along with low/minus and overflow),

the right 32 bits of register 5 are stored in fullword X. The above code is equivalent to the
following lines,

 BE THERE

 ST 5,X

THERE EQU *

Notice that control falls through the BE on conditions low/minus, high/plus, and

overflow. As a result, the store operation occurs on these conditions.

The example above illustrates when to choose STOC over ST. If the condition code is set

and the store is conditional based on the current value of the condition code, a judicious use of
STOC can mean one less branch instruction in your program.

HLASM provides relief from having to code a binary mask by providing suffixes that can

be appended to STOC to indicate the conditions under which the store should occur. An earlier
version of HLASM provided the following suffixes.

Suffix Condition Effective M3 Value

E Equal B’1000’

L Low B’0100’

H High B’0010’

NE Not equal B’0111’

NL Not low B’1011’

NH Not high B’1101’

Using these suffixes you can code this,

 STOCH 3,X

instead of this,

 STOC 3,X,B’0010’

The most current version of HLASM provides the following additional suffixes.

Suffix Condition Effective M3 Value

Z Zero B’1000’

M Minus B’0100’

P Plus B’0010’

NZ Not zero B’0111’

NM Not minus B’1011’

NP Not plus B’1101’

NO Not overflow B’1110’

Below is an assembly listing of STOC instructions using all possible suffixes. The opcode,
EBF3, occupies the first and last bytes in the object code. The operand 1 register is 3. The base
displacement address C22600 (which when rearranged in proper sequence is C00226) is the
base/displacement address of X. The only difference in these instructions occurs in the fourth
digit of the object code and corresponds to the suffix appended to STOC.

 Loc Object Code Addr1 Addr2 Stmt Source Statement

00002C EB38 C226 00F3 0022C 63 STOCE R3,X

000032 EB34 C226 00F3 0022C 64 STOCL R3,X

000038 EB32 C226 00F3 0022C 65 STOCH R3,X

00003E EB37 C226 00F3 0022C 66 STOCNE R3,X

000044 EB3B C226 00F3 0022C 67 STOCNL R3,X

00004A EB3D C226 00F3 0022C 68 STOCNH R3,X

000050 EB38 C226 00F3 0022C 69 STOCZ R3,X

000056 EB34 C226 00F3 0022C 70 STOCM R3,X

00005C EB38 C226 00F3 0022C 71 STOCE R3,X

000062 EB34 C226 00F3 0022C 72 STOCL R3,X

000068 EB32 C226 00F3 0022C 73 STOCH R3,X

00006E EB3B C226 00F3 0022C 74 STOCNL R3,X

000074 EB3D C226 00F3 0022C 75 STOCNH R3,X

00007A EB38 C226 00F3 0022C 76 STOCZ R3,X

000080 EB34 C226 00F3 0022C 77 STOCM R3,X

000086 EB32 C226 00F3 0022C 78 STOCP R3,X

00008C EB37 C226 00F3 0022C 79 STOCNZ R3,X

There are two binary masks for which there is no corresponding suffix. B’0000’ would
indicate that the store should never occur, and if no exceptional condition exists, makes the
STOC function as a NOP. B’1111’ indicates the store should always occur, and if no exceptional
condition exists, makes the STOC function as ST. In both cases it is better to avoid using STOC.

Examples

Assume the following declaration for all the examples below,

Y DC F’100’

 STOC R6,Y,B’0010’ STORE R6 INTO Y IF CC = HIGH/PLUS

 STOCH R6,Y EQUIVALENT TO THE INSTRUCTION ABOVE

 STOC R9,Y,B’1011’ STORE R9 INTO Y IF CC NOT = LOW/MINUS

 STOCNL R9,Y EQUIVALENT TO THE INSTRUCTION ABOVE

 STOC R7,Y,B’1000’ STORE R7 INTO Y IF CC = EQUAL/ZERO

 STOCZ R7,Y STORE R7 INTO Y IF CC = EQUAL/ZERO

 STOCE R7,Y STORE R7 INTO Y IF CC = EQUAL/ZERO

 STOC R7,Y,B’0111’ STORE R7 INTO Y IF CC NOT = EQUAL/ZERO

 STOCNZ R7,Y EQUIVALENT TO THE INSTRUCTION ABOVE

Tips

1. Use STOC instead of ST in situations where the store occurs conditionally. This avoids
coding an additional branch instruction.

2. Avoid the use of masks B’0000’ and B’1111’ with STOC. Choose NOP and ST instead.

3. LOC is the sister instruction to LOC. It works in an analogous way to STOC but loads a
fullword in memory into a register instead of storing.

4. STOC and LOC are only available on certain models. Check the Principles of Operation
for your machine.

5. Consult the Principles of Operation for situations in which STOC can provide significant

performance improvement and for which models of the machine support this
instruction.

