
 Techniques for Converting Double Precision Binary to Packed Decimal

 Converting a binary single precision (one 32-bit register) value to packed decimal is easy: Invoke CVD

(Convert to Decimal) to place the equivalent packed decimal result in an 8-byte (doubleword) field.

Since the range of integers in a single register is −2,147,483,648 to 2,147,483,647, and the doubleword

can contain up to 15 decimal digits, the result can always be converted without loss of precision.

 But how do you convert double precision (64-bit) results when the value to be converted is spit across

two single 32-bit registers? This case occurs when we multiply two 32-bit values. To get us thinking

about this problem, imagine that each register contains only four bits instead of 32 or 64. The possible

2’s complement values and their decimal equivalents for such 4-bit registers are listed below:

2’s Comp Decimal

0000 0

0001 +1

0010 +2

0011 +3

0100 +4

0101 +5

0110 +6

0111 +7

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

Continuing this line of thought, a double precision value would occupy two registers and contain 8 bits.

Assume that we have a CVD instruction that converts a single 4 bit register to decimal. Let’s take a

concrete example with a binary 8-bit value 01110011 contained in registers 4 and 5 as pictured below.

R4 R5

If we apply CVD to each register, we end up with two values: 7 and 3. The 3 correctly represents the

value in R5, but the one bits in R4 are converted as if their values represent 4, 2, and 1 respectively,

moving left to right in the register. In fact, those bits represent the values 64, 32, and 16 in our double

precision value. Each bit is off by a factor of 16 = 24. To adjust for this we multiply 7 = 4 + 2 + 1 by 16,

and then add the 3 (which was correctly converted) to produce the correct result.

0011 0111

R4 R5

 (7 x 16) + 3 = 115

 But hold on - there is one flaw in our conversion plan. What happens if the low order register (R5

above) contains a 1 in the high order bit? Let’s take a concrete example with a binary 8-bit value

00111011 contained in registers 4 and 5. In this case, CVD converts R5 to its negative value, -5, when it

should have been converted as +11. In this case we are off by 16 = 24. Negative values will always cause

us to be off by 16. Moving to 32-bit registers with negative values, we will always be off by a factor of

232.

R4 R5

 (3 X 16) + -5 = 43 (Adding 16 produces the correct answer 59)

 In the case where R5 contains a negative value, we can easily correct by adding 1 to R4 (which would

be equivalent to adding 16 = 24 for 4-bit registers, or 232 in the case of 32-bit registers).

 We can now formulate a plan for converting a double precision value contained in two 32-bit registers

(an even/odd register pair) to packed-decimal.

1) First, test the odd register. If it contains a negative value, add 1 to the even register.

2) Use CVD to convert the even register and multiply the result by 4,294,967,296 = 232.

3) Use CVD to convert the odd register and add it to the result in 2).

 This technique works for all values (positive and negative) contained in the two registers.

Here is the assembler code for generating a double precision result in R4/R5 and converting it back to

packed-decimal in PRODPK. We assume X and Y are binary fullwords.

 L R5,X

 M R4,Y

 LTR R5,R5 DOES LOWER ORDER REG LOOK NEG?

 BNM NOCORR IF NOT...TAKE BRANCH

 A R4,=F'1' CORRECT BY FACTOR OF 2^32

NOCORR EQU *

 ZAP PRODPK,=P'0'

 CVD R4,PRODPKR

 MP PRODPK,TWO32 RESULT IS OFF BY THIS FACTOR

0011 0111

1011 0011

 CVD R5,DBLWD GRAB THE LEAST SIGNIF PART

 AP PRODPK,DBLWD ADD IN THE LOW-ORDER PART

 …

 DS 0D

DBLWD DS D

PRODPK DS 0PL16

PRODPKL DS PL8

PRODPKR DS PL8

TWO32 DC P'4294967296' 2^32

 We can also produce double precision results (assume X and Y are fullwords) by multiplying with

grande instructions:

 LGF R8,X

 MSGF R8,Y

 We end up with a double precision result (64 bits) in a single grande register. In this case we can

invoke the grande version of CVD to get back to packed-decimal assuming XTIMESY is defined as PL16.

 CVDG R8,XTIMESY

 This grande solution suggests an alternative to the first technique we discussed for converting double

precision results contained in an even/odd register pair. Why not move the even/odd value to a grande

register and then invoke CVDG? Code for this technique is presented below:

 L R5,X

 M R4,Y

 ST R4,XP

 ICMH R5,B'1111',XP

 CVDG R5,XTIMESY

 …

XP DS F

 The first two lines produce a double precision result in even/odd registers R4 and R5. We then

move the contents of R4 into the high-order part of grande register R5 with Store Fullword and Insert

Characters Under Mask High instructions. This allows us to use CVDG on R5 to complete the conversion.

 When converting between data types we have to give some thought to whether the conversion is even

possible. In other words, can every 32-bit binary value be represented in 8-byte packed-decimal format

if we invoke CVD, and can every 64-bit binary value be represented in 16-byte packed-decimal format if

we invoke CVDG? In the case of 32-bit binary values, the range of integers is +2,147,483,647 to

−2,147,483,648. Any number in this range can be represented using the 15 decimal digits in our packed

decimal target. In the case of 64-bit values, the range of integers is +9,223,372,036,854,775,807 to

−9,223,372,036,854,775,808. Since our packed-decimal target is 16 bytes, and can contain 31 decimal

digits, converting from binary to packed will not be a problem. Packed-decimal is a “larger” data type

than binary, so the only conversions that will cause an exception are those from packed-decimal back to

binary.

